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Abstract: This work deals with automatic Hardware Description 

Languages (HDLs) code generation from UML 2.0 models at early 

stages of embedded systems development. In our case, we target 

two standard HDLs which are SystemC and VHDL. A particularity 

of our proposed approach is the fact that HDLs code generation 

process is performed through two levels of abstraction. In the first 

level, we use UML hierarchic sequence diagrams to generate a HDL 

code that targets algorithmic space exploration and simulation 

eventually. In the second level of abstraction, messages that occur 

in sequence diagrams are implemented using UML activity 

diagrams whose state actions are expressed in the C++ Action 

Language included in the Rhapsody environment from which a full 

HDL code is generated for both simulation and synthesis. We have 

developed two macros for SystemC and VHDL code generation and 

integrated them as tool boxes in the Rhapsdoy environment. 
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1. Introduction 

We can define Embedded Systems (ESs) [9] as application-

specific computers, masquerading as non-computers that 

interact with the physical world and must perform a small set 

of tasks cheaply and efficiently. ESs have specific 

characteristics such as heterogeneity (hardware / software), 

ability to react, criticality, real time, and consumption 

constraints.  

Modern ESs are able to execute very complex algorithms 

ranging from control, telecommunication to media high 

performance applications implemented in only one chip 

(SOC: System-On-a-Chip) [10].  

The ever complexity of embedded systems (ESs) design has 

pushed researchers in the field to raise the level of 

abstraction and exploit recent Software Engineering 

technologies such as object technology and in particular the 

Unified Modeling Language (UML) [6]. 

ESs designers are now confronted with the challenge of how 

to close the gap between UML and the well practiced 

Hardware Description Language (HDL) in ESs world such as 

SystemC [20] and VHDL [23]. 

Since UML was originally introduced in the software field, 

most commercial tools generate software code such as C, 

C++, and Java from UML models. However, there is a lack 

of tools that can synthesize UML models into HDL 

descriptions.  

Our objective is to raise the level from which HDL 

descriptions can be generated to perform quick algorithmic 

space exploration, simulation and synthesis eventually. Thus 

a refinement directed approach seems inevitable to bridge the 

gap smoothly between UML models and HDLs descriptions.  

To address this problem, we have proposed a flow that 

permits automatic HDL code generation from UML models 

at two levels of abstraction.  The first level corresponds to 

HDL code generation from UML sequence diagrams without 

implementing messages. Thus the code generated at this 

stage is oriented to algorithmic space exploration and 

simulation eventually since the obtained code consists only of 

processes input/output ports, processes sensitivity lists, 

dependencies between processes, and signals. The second 

level of abstraction is viewed as a refinement of the first level 

where messages are implemented using UML activity 

diagrams whose actions are expressed in the C++ Action 

Language included in the Rhapsody environment [15]. At 

this stage, the generated code is dedicated to both simulation 

and synthesis. In this paper, our main contribution is the 

development of a tool that can generate SystemC and VHDL 

code from UML models following a refinement directed 

approach. The rest of this paper is organized as follows: 

section two is dedicated to related works concerning the 

synthesis of UML models to SystemC and VHDL code. 

Section three gives an overview of VHDL and SystemC 

languages. Our proposed flow with an illustrative example is 

discussed in section four. The implementation of our tool and 

a case study is discussed in section five before concluding. 

 

2. Related Work 

In this section, we try to present briefly some pertinent woks 

targeting the generation of VHDL and SystemC codes from 

UML models.  

The authors in [9] proposed the synthesis of state diagrams 

into VHDL. 

In [12], the authors presented a technique for generating 

VHDL descriptions from a subset of UML, and a set of rules 

to transform UML classes and Statecharts to VHDL.  

The authors in [4] and [5] used SMDL (the language with 

formal semantics and high-level concepts such as states, 

queues and events) as an intermediary language to generate 

VHDL code from UML Statecharts and activity diagrams. 
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A Model Driven Architecture (MDA) approach for 

generating VHDL code from UML models was proposed in 

[1], [8], and [17]. In [8], the authors used UML Meta-model 

to generate different platform specific implementations.  

In [17], the authors defined a set of rules to map UML to 

VHDL in a practical code generator.  

In [16], the authors presented a UML/SystemC profile for 

SystemC code generation from UML structural and 

Statecharts diagrams.  

In [21], the authors developed a tool for UML synthesis 

called: Chip Fryer that can generate VHDL code from XMI 

representation of UML models. The input model consists of 

class, object diagrams, and state machines. Actions are 

expressed in a C++ action language.  

In [24], the authors proposed a UML/MDA approach called 

MoPCoM methodology that permits automatic VHDL and 

SystemC code generation from UML models and MARTE 

profile by means of MDA techniques. Input models are 

focused on UML class, component, and Statecharts diagrams. 

Contrary to these works, our approach tries to generate 

VHDL and SystemC codes automatically at early stages of 

ESs development from UML sequence diagrams in a first 

step then from UML activity diagrams in a second step. 

 

3. VHDL and SystemC 

 3.1  VHDL 

VHDL (VHSIC Hardware Description Language) [2], [3], 

[23] is an industrial standard HDL. It looks similar to 

programming language ADA and used for both simulation 

and synthesis.  

Now VHDL is governed by IEEE standards and very popular 

for European design houses. VHDL models consist of an 

external part (entity) that defines the Inputs/Outputs of the 

model and the internal part that describes the operation of the 

model (the architecture). The Entity declaration format looks 

like:  

entity entity_name is 

port (signal_name(s): mode signal_type; 

: 

signal_name(s): mode signal_type); 

end entity entity_name; 

 

mode describes the direction of transferred data through port 

(in, out, or inout); signal_type defines the signal(s) type.  

The Architecture format looks like: 

architecture architecture_name of entity_name is  

begin  

: 

end architecture architecture_name; 

  

VHDL designs can be written in three different styles: 

structural, data flow, and behavioural. Of course, these three 

styles can be mixed. Structural descriptions describe the 

interconnection of hierarchy and are useful for designs reuse. 

They consist of component instantiation statements (i.e. port 

map instruction) which are concurrent statements. 

Behavioural descriptions are focused on the process concept. 

The latter is used in two ways:  

For combinational logic, we mention the list of all process 

input signals after the keyword process. The general form is: 

process (signal_names) 

begin 

..... 

end process; 

 

For sequential logic, two cases occur:  

In the first case, the sensitivity list is empty, but statements 

inside the process must include wait statements;  

In the second case, the sensitivity list contains the clock 

signal and the statements are within an if statement. 

The general form is as follows: 

process (clock) 

begin 

if clock and clock'event then 

.... 

end if; 

end process; 

 

Processes communicate via signals. Many processes can be 

put in one architecture. VHDL supports classical language 

data types such as: boolean, character, integer, real, and 

string and control statements such as if, loop, and case. In 

addition, VHDL has the types: bit, bit_vector, and the IEEE 

1164-standard-logic types that are std_logic and 

std_logic_vector. For more details on VHDL, one can refer 

to [23]. 

 

    3.2  SystemC 

SystemC [18], [19], [20] is an extension of C++ language for 

SOC modeling and simulation. Various versions of the 

language have appeared but we consider SystemC2.0. 

SystemC structural designs are focused on modules. A 

module contains ports, interfaces, channels, processes, and 

eventually other modules. In SystemC, concurrent behaviors 

are modeled using processes. A process has a sensitivity list 

that includes the set of signals to which it is sensitive. This 

list can be either static (pre-specified before simulation 

starts) or dynamic. 

SystemC processes execute concurrently and may suspend on 

wait() statements. Such processes requiring their own 

independent execution stack are called “SC_THREADs”. 

When the only signal triggering a process is the clock signal 

„clk‟ we obtain what we call “SC_CTHREAD” (clocked 

thread process). Certain processes do not actually require an 

independent execution stack and cannot suspended on wait() 

statement. Such processes are termed “SC_METHODs”. 

SC_METHOD processes execute in zero simulation time and 

returns control back to the simulation kernel. 

The following code [19] presents a SystemC module named 

display with an input port din, and an SC_METHOD called 

print_data which is sensible to din. For each SystemC 

module there are two files: .h for ports, functions, variables, 

and processes declaration and .cc for process and functions 

implementation. systemc.h designates the SystemC library 

file. 
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// display.h 

#include "systemc.h" 

#include "packet.h" 

 

SC_MODULE(display) { 

sc_in<long> din; // input port 

void print_data(); 

// Constructor 

SC_CTOR(display) { 

SC_METHOD(print_data); // Method process to print data 

sensitive << din; 

} 

}; 

// display.cc 

#include "display.h" 

void display::print_data() { 

cout <<"Display:Data Value Received, Data = "<< din << 

"\n"; 

 

4. Our proposed flow 

As showed in figure 1, our proposed flow starts by capturing 

system requirements as a set of related uses cases and actors. 

At this stage, we use UML uses cases with „include‟ and 

„extend‟ relations. Figure 2 gives an example of modelling 

with use cases diagram. In this example, we have one actor 

and two use cases named usecase_0 and usecase_1. 

usecase_0 is related to usecase_1 by the „include‟ relation.  

Each use case diagram is then refined into a set of interacting 

objects showing a possible scenario. At this stage, we use 

UML sequence diagram. The „include‟ relation is modelled 

as an unconditional call of the use case child while the 

„extend‟ relation is an optional call subject to some 

condition. Figure 3 shows a possible implementation of use 

cases using hierarchic sequence diagrams. In this example, 

we model usecase_0 as the parent use case using sequence 

diagram with three interacting objects (class‟s instances) 

class_0, class_1, and class_2 and an external object that 

represents the environment (Env). usecase_1 is modelled as a 

child sequence diagram invoking by a call from the 

environment. In order to model the „extend‟ relation, we add 

a conditional call invoking the child sequence diagram 

(usecase_2 in figure 4). From UML sequence diagrams, 

VHDL and SystemC codes are generated automatically using 

the VB API which is integrated in the Rhapsody 

environment. This API offers the necessary functions and 

commands that permit the manipulation of UML diagrams 

and then the extraction of information needed for HDL code 

generation as text files. The generated code in this step will 

be used for algorithmic space exploration and simulation 

eventually. 

We have used three techniques for HDL code generation 

process: 

1
st
 technique: each message is considered as a VHDL 

process/SystemC SC_METHOD. 

2
nd

 technique: each end-to-end scenario is considered as a 

VHDL process/ SystemC SC_THREAD. 

3
rd

 technique: each object is considered as a VHDL process/ 

SystemC SC_THREAD. 

For each technique, two styles of VHDL descriptions are 

generated: structural using VHDL mapping instructions and 

behavioural using the VHDL process concept. Dashed lines 

in figure 2 enable the designer to modify his/her design 

according to simulation results. VHDL/SystemC simulation 

and/or synthesis are performed using available commercial 

tools such as ModelSim (ModelSim) or SystemC simulator. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Our proposed flow 
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Figure 2.  Example of UML use cases diagram 
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Figure 3.  Possible implementation of „include‟ relation 
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Figure 4.  Possible implementation of „extend‟ relation 

 

4.1    Illustrative example 

In order to motivate our proposed approach, we try to apply 

the HDL code generation process on an example whose use 

case diagram is illustrated in figure 2. In this example, we 

assume that we have an actor and two use cases named 

usecase_0 and usecase_1 that are related by an „include‟ 

relation. Both usecase_0 and usecase_1 are implemented 

using UML sequence diagrams as showed in figure 5. In the 

following sections, we try to explain the three techniques for 

VHDL/SystemC code generation from UML sequence 

diagrams. 

 

4.2     First technique 

In this technique, each message is mapped to a VHDL 

process or a SystemC SC_METHOD.  

Methods arguments are transformed to input ports while 

returned values are mapped to output ports. To each call to a 

message, we add a Boolean input port that corresponds to the 

event to which process is sensible and a Boolean output port 

that corresponds to control return. From figure 5, we observe 

that message_2 is used in both usecase_0 and usecase_1. 

Such a common message will be mapped to a SC_METHOD 

process in a separate module. Two styles of VHDL 

descriptions are generated: the behavioural description and 

structural description. In the former, all generated processes 

from children sequence diagrams are put in one architecture 

that corresponds to the main sequence diagram. In the latter, 

we consider children sequence diagrams as sub entities 

reflecting the hierarchy of the design. Table 1 shows the 

correspondence between UML and VHDL/SystemC 

concepts.  
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Figure 5.  Example of hierarchic sequence diagrams 

(a) parent sequence diagram (usecase_0); (b) child sequence 

diagram (usecase_1) 

 

Assume that we have a message with two integer arguments 

(a and b) and an integer return value (x): x = message(a,b). 

The corresponding VHDL code for this message is as 

follows:  

message : process is 

variable arg1, arg2, result : integer; 

begin 

wait until cal = true;    -- cal read 

cal <= false;             -- cal write 

arg1 := a; 

arg2 := b; 

-- message body 

x <= result;              -- x write 

ret <= true;              -- ret write 

end process message; 
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Table 1. Correspondence between UML and 

VHDL/SystemC for the first technique 

UML concept VHDL (behavioral 
/structural) 

SystemC 

Message Process/Entity SC_METHOD 

Common message Process/Entity SC_METHOD in a 

separate module 

Argument in port sc_in <type> port 

Returned value out port sc_out <type> port 

call inout port (boolean) sc_inout <bool> port 

Control return out port (boolean) sc_out <bool> port 

Child sequence 
diagram 

sub entity (structural) sub module 

Top level model Test bench sc_main() 

 

 

arg1 and arg2 are two variables used to stock the two 

arguments coming from the two ports (signals) a and b.  

result is a variable used to stock the returned value in the port 

x. We use the Boolean ports cal and ret to specify the 

message invoking and the return of the control to the caller 

respectively. The meaning of this VHDL code is as follows: 

The process message will be blocked until the occurrence of 

the signal cal (cal = true). After that, the process resumes its 

execution: sets cal to false; stock the arguments coming from 

the input ports a and b into variables arg1 and arg2; 

performs some computations; stocks the result of 

computation into output port x; sets the signal ret to true. 

Similarly, The VHDL code for the caller looks like: 

caller : process is 

variable val : integer; 

begin 

-- instructions 

cal <= true;                -- cal write 

a <= “ “;                  -- initialization 

b <= “ “; 

wait until ret = true;      -- ret read 

ret <= false;               -- ret write 

val:= x;                    -- x read 

-- Remaining instructions 

end process caller; 

 

The meaning of this VHDL code is as follows: 

After performing some computations, the process caller sets 

the signal cal to true; initializes the arguments ports a and b; 

blocked until the occurrence of the signal ret (ret = true). 

After that, the process resumes its execution: sets ret to false; 

stocks the content of port x into variable val; performs the 

remaining computation. 

The corresponding SystemC code for this message is as 

follows: 

// module1.h 

# include “systemc.h” 

SC_MODULE(module1){ 

sc_in<int> a; 

sc_in<int> b; 

sc_out<int> x; 

sc_inout<bool> cal; 

sc_out<bool> ret; 

void message(); 

SC_CTOR(module1) { 

SC_METHOD(message); 

sensitive << cal; }}; 

// module1.cc 

#include “module1.h” 

void module1::message() { 

int var1, var2, result; 

while cal == 0 ; 

cal = 0;      //  cal = false; 

var1 = a; 

var2 = b; 

// message body 

x = result; 

ret = 1; }            //   ret = true; 

 

SC_METHOD message is sensitive to the signal cal. 

The SystemC code for the caller is as follows: 

// module2.h 

# include “systemc.h” 

SC_MODULE(module2){ 

sc_in<int> x; 

sc_inout<bool> ret; 

sc_out<int> a; 

sc_out<int> b; 

sc_out<bool> cal; 

void caller(); 

SC_CTOR(module2) { 

SC_METHOD(caller); 

sensitive << ****; // some ports 

}}; 

// module2.cc 

#include “module2.h” 

void module2::caller() { 

int result; 

// instructions; 

cal = 1;      //  cal = true; 

a = “ ”; // arguments initialization 

b = “ ”; 

While ret == 0 ; 

ret = 0; 

result = x; 

// remaining instructions 

} 

Note that SC_METHOD processes message and caller are 

put in two distinct modules: module1 and module2 

respectively. However, if we put them into one module, all 

ports become sc_inout. 

By applying this technique on our example, we obtain six (6) 

VHDL processes and six SC_METHOD processes that are: 

Message_0, Message_1, Message_2, Message_3, 

Message_4, and Message_5. In the VHDL behavioural style, 

all processes are put in one architecture. The entity includes 

all processes ports. Assume that all messages arguments and 

return values are integers. cal0, cal1, cal2, cal3, cal4, and 
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cal5 designate Boolean ports for message_0, message_1, 

message_2, message_3 message_4, and message_5 calls 

respectively. arg0 and arg4 designate ports for message_0 

and message_4 arguments respectively. val0, val1, and val5 

designate ports for message_0, message_1, and message_5 

returned values respectively. ret0, ret1, ret2, ret3, ret4, and 

ret5 designate Boolean ports for messages controls return.  

The corresponding VHDL code for the behavioural 

description is as follows: 

entity  usecase_0 is  

port (cal0, cal1, cal2, cal3, cal4, cal5 : inout boolean; arg0 : 

in integer; arg4 : inout integer; ret0, ret1, ret2, ret3, ret4, 

ret5 : inout  boolean; val0: out integer; val1, val5 : inout 

integer); 

end entity usecase_0; 

 

architecture system of usecase_0 is   

begin   

message_0 : process is 

variable arg, val : integer; 

begin 

wait until cal0 = true; 

cal0 <= false; 

arg := arg0; 

-- instructions 

cal1 <= true ; 

wait until ret1 = true ; 

ret1 <= false ; 

val := val1; 

-- remaining instructions 

val0 <= w; 

ret0 <= true ; 

end process message_0; 

 

message_1 : process is 

begin 

wait until cal1 = true; 

cal1 <= false; 

-- instructions 

cal2 <= true; 

wait until ret2 = true; 

ret2 <= false; 

-- remaining instructions 

val1 <= z; 

ret1 <= true; 

end process message_1; 

 

message_2 : process is 

begin 

-- code 

end process message_2; 

 

message_3 : process is 

variable temp : integer; 

begin 

wait until cal3 = true; 

cal3 <= false; 

-- instructions 

if temp = 1 then 

cal4 <= true; 

arg4 <= temp; 

wait until ret4 = true; 

ret4 <= false; 

end if 

-- remaining instructions 

ret3 <= true; 

end process message_3; 

 

message_4 : process is 

-- code 

end process message_4; 

 

message_5 : process is 

begin 

-- code 

end process message_5; 

end architecture system; 

 

The VHDL structural style is obtained by considering each 

process as a separate entity as well as all children sequence 

diagrams. For the sake of space, we do not show all messages 

VHDL code, rather than, we give the VHDL code only for 

message_0.  

 

entity  message0 is  

port (cal0 : inout boolean, cal1: out  boolean; ret0 : out 

boolean, ret1: inout boolean; arg0 : in integer; val0 : out 

integer; val1 : in integer); 

end entity message0; 

 

architecture basic of message0 is  

begin   

message_0 : process is 

variable arg, val : integer; 

begin 

wait until cal0 = true; 

cal0 <= false; 

arg := arg0; 

-- instructions 

cal1 <= true ; 

wait until ret1 = true ; 

ret1 <= false ; 

val:= val1; 

-- remaining instructions 

val0 <= w; 

ret0 <= true ; 

end process message_0; 

end architecture basis; 

 

entity  usecase_1 is  

port (cal4 : inout boolean; arg4 : in integer; ret4 : out  

boolean); 

end entity usecase_1; 

 

architecture struct of usecase_1 is 

signal cal2, cal5, ret2, ret5 : boolean 

signal val5 : integer; 

begin 
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messag2 : entity work.message2(basic) 

     port map (cal2,ret2); 

messag4 : entity work.message4(basic) 

     port map (cal4,cal5,ret4,ret5,arg4,val5); 

messag5 : entity work.message5(basic) 

     port map (cal5,cal2,ret5, ret2, val5); 

end architecture struct; 

 

architecture struct of usecase_0 is 

signal ret1, cal1, cal2, ret2, cal4, ret4 : boolean; 

signal arg4, val1 : integer; 

begin 

messag0 : entity work.message0(basic) 

     port map (cal0, cal1, ret0, ret1,arg0, val0, val1); 

messag1 : entity work.message1(basic) 

     port map (cal1,ret2,ret1,cal2, val1); 

messag2 : entity work.message2(basic) 

     port map (cal2,ret2); 

messag3 : entity work.message3(basic) 

     port map (cal3, cal4, ret4,ret3, arg4); 

usecase1: entity work.usecase_1(struct) 

     port map (cal4,arg4,ret4); 

end architecture struct; 

 

entity  test_bench is  

end entity test_bench; 

architecture test_usecase_0 of test_bench is 

signal cal0, cal3, ret0, ret3 : boolean; 

signal arg0, val0 : integer; 

begin 

usecase0 : entity work.usecase_0(struct) 

           port map(cal0, ret0, arg0, val0, cal3, ret3) ; 

stimulus : process is 

begin 

cal0 <= true ; 

ret0 <= false; 

arg0 <= 500; 

val0 <= 0; 

cal3 <= true ; 

ret3 <= true ; 

end process stimulus; 

end architecture test_usecase_0; 

 

Since message_2 is a common message, we put it in a 

separate module called mess2. Here, we have two modules: 

usecase0 including SC_METHODS message_0, message_1, 

and message_3, and usecase1including message_4, and 

message_5. 

The corresponding SystemC code is as follows: 

// mess2.h 

# include “systemc.h” 

SC_MODULE(mess2){ 

sc_inout<bool> cal2; 

sc_out<bool> ret2; 

void message_2(); 

SC_CTOR(mess2) { 

SC_METHOD(message_2); 

sensitive << cal2; 

}}; 

 

// mess2.cc 

#include “mess2.h” 

void mess2::message_2() { 

while cal2 == 0 ; 

cal2 = 0;      

// message body; 

ret2 = 1;} 

 

// usecase1.h 

# include “systemc.h” 

SC_MODULE(usecase1){ 

sc_in<int> arg4; 

sc_inout<int> val5; 

sc_out<bool> cal2; 

sc_inout<bool> ret2; 

sc_inout<bool> cal4; 

sc_inout<bool> cal5; 

sc_inout<bool> ret5; 

sc_out<bool> ret4; 

void message_4(); 

void message_5(); 

SC_METHOD(message_4); 

sensitive << cal4; 

SC_METHOD(message_5); 

sensitive << cal5; 

}}; 

 

// usecase1.cc 

void usecase1::message_4() { 

int var, result; 

while cal4 == 0; 

cal4 = 0;      

var = arg4; 

// instructions 

cal5 = 1; 

while ret5 == 0; 

ret5 = 0; 

result = val5; 

// remaining instructions 

ret4 = 1;     

} 

void usecase1::message_5() {  

// code 

} 

// usecase0.h 

# include “systemc.h” 

SC_MODULE(usecase0){ 

sc_in<int> arg0; 

sc_inout<int> arg4; 

sc_out<int> val0; 

sc_inout<int> val1; 

sc_inout<bool> cal0; 

sc_inout<bool> cal1; 

sc_out<bool> cal2; 

sc_inout<bool> cal3; 

sc_out<bool> cal4; 

sc_out<bool> ret0; 

sc_inout<bool> ret1; 
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sc_inout<bool> ret2; 

sc_out<bool> ret3; 

sc_inout<bool> ret4; 

void message_0(); 

void message_1(); 

void message_3(); 

SC_CTOR(usecase0) { 

SC_METHOD(message_0); 

sensitive << cal0; 

SC_METHOD(message_1); 

sensitive << cal1; 

SC_METHOD(message_3); 

sensitive << cal3; 

}}; 

 

// usecase0.cc 

#include “usecase0.h” 

void usecase0::message_0() { 

 // code 

}; 

void usecase1::message_1() { 

// code 

}; 

void usecase1::message_3() { 

int var; 

while cal3 == 0 ; 

cal3 = 0;       

// instructions 

arg4 = var; 

if arg4 = 1 { 

cal4 = 1; 

while ret4 == 0; 

ret4 = 0; 

} 

// remaining instructions 

ret3 = 1;             

}; 

// main.cc 

#include “mess2.h” 

#include “usecase1.h” 

#include “usecase0.h” 

int  sc_main(int argc, char* argv[]) { 

sc_signal<int> ARG0, ARG4, VAL0, VAL1; 

sc_signal<bool> CAL0, CAL1, CAL2, CAL3, CAL4, CAL5 ; 

sc_signal<bool> RET0, RET1, RET2, RET3, RET4, RET5 ; 

mess2 ms2(“mess2”); 

 ms2.cal2(CAL2); 

ms2.ret2(RET2); 

usecase1 uc1(“usecase1”);  

uc1.arg4(ARG4); 

 uc1.val5(VAL5); 

 uc1.cal2(CAL2);  

uc1.cal4(CAL4); 

uc1.cal5(CAL5); 

uc1.ret2(RET2); 

uc1.ret4(RET4); 

uc1.ret5(RET5); 

usecase0 uc0(“usecase0”);  

uc0.arg0(ARG0);  

uc0.arg4(ARG4);  

uc0.val0(VAL0);  

uc0.val1(VAL1); 

uc0.cal0(CAL0); 

uc0.cal1(CAL1);  

uc0.cal2(CAL2); 

uc0.cal3(CAL3); 

uc0.cal4(CAL4); 

uc0.ret0(RET0); 

uc0.ret1(RET1); 

uc0.ret2(RET2); 

uc0.ret3(RET3); 

uc0.ret4(RET4); 

return(0);} 

 

4.3     Second technique 

In this technique, we consider each end-to-end scenario as a 

VHDL process (SystemC SC_THREAD). An end-to-end 

scenario is a sequence of methods that are invoked by an 

external call from the environment. In this case, all processes 

communicate via shared variables. Table 2 shows the 

correspondence between UML and VHDL/SystemC 

concepts. All internal methods are implemented as VHDL 

procedures or functions. Since the same method may be 

called by many processes, we have to declare such methods 

globally in a VHDL package. We create ports only for 

external calls coming or returned values to the environment. 

 

Table 2. Correspondence between UML and 

VHDL/SystemC for the second technique 

UML concept VHDL (behavioral 
/structural) 

SystemC 

End to end scenario Process/Entity SC_THREAD 

Internal message 
without returned 

value 

procedure C++ function 

Internal message 
with a returned 

value 

function C++ function 

External call port port 

Top level model Test bench sc_main() 

 

 

By applying this technique on the above example, we obtain 

two VHDL processes: process1 including the sequence of 

messages: message_0, message_1, and message_2 and 

process2 including message_3, message_4, message_5, and 

message_2. We observe that message_2 is called by both 

process_1 and process_2. Thus message_2 is declared 

globally in a package. We use the use clause to import all 

messages defined in the package. work designates the user 

library where are stocked  files resulting from VHDL code 

simulation. 

 

package pack is 

procedure message_2; 
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end package pack; 

 

package body pack is 

procedure message_2 is 

begin 

-- message_2 body 

end procedure message_2; 

end package body pack; 

 

The VHDL behavioral style for the two processes is as 

follows: 

 

entity  usecase_0 is  

port (cal0, cal3 : inout boolean; arg0 : in integer; ret0, ret3 

: out  boolean; val0 : out integer); 

end entity usecase_0; 

 

architecture system of usecase_0 is  

library work; 

use work.pack.all; 

begin   

process1 : process is 

function message_1 return integer is 

variable result : integer; 

begin 

-- message_1 body 

message_2; -- call to message_2; 

-- remaining instructions 

return result; 

end function message_1; 

 

function message_0(arg : in integer) return integer is 

variable ret1, result : integer; 

begin 

-- message_0 body 

ret1 = message_1; -- call to message_1 

return result; 

end function message_0; 

-- process code 

variable arg; 

begin 

wait until cal0 = true; 

cal0 <= false; 

arg := arg0; 

val0 <= message_0(arg) 

ret0 <= true; 

end process process1; 

 

process2 : process is 

function message_5 return integer is 

variable result : integer; 

begin 

-- message_5 body 

message_2; -- call to message_2; 

-- remaining instructions 

return result; 

end function message_5; 

 

procedure message_4 (arg : in integer) is 

variable result : integer; 

begin 

-- message_4 body 

Result := message_5; -- call to message_5; 

-- remaining instructions 

end procedure message_4; 

 

procedure message_3 is 

variable result arg : integer; 

begin 

-- message_3 body 

arg := arg4; 

result := message_4(); -- call to message_4; 

-- remaining instructions 

end procedure message_3; 

begin 

-- process code 

begin 

wait until cal3 = true; 

cal3 <= false; 

message_3; 

ret3 <= true; 

end process process2; 

end architecture; 

 

The VHDL structural style for the two processes is as 

follows: 

 

entity proc1 is  

port (cal0 : in boolean; arg0 : in integer; ret0 : out  

boolean; val0 : out integer); 

end entity proc1; 

architecture basic of proc1 is  

begin   

process1 : process is 

-- process1 body 

end process process1; 

end architecture basis; 

 

entity proc2 is  

port (cal3 : in boolean; ret3 : out  boolean ); 

end entity proc2; 

architecture basic of proc2 is  

begin   

process2 : process is 

-- process2 body 

end process process1; 

end architecture basis; 

 

architecture struct of usecase_0 is 

begin 

proces0 : entity work.proc0(basic) 

  port map (cal0,arg0, ret0,val0); 

proces1 : entity work.proc2(basic) 

  port map (cal3,ret3); 

end architecture struct; 



International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004)     54  
Volume 2, Issue 1, February 2011 

 

 

The test bench architecture is the same as in the first 

technique. The corresponding SystemC code is as follows: 

 

// system.h 

# include “systemc.h” 

SC_MODULE(system){ 

sc_in<int> arg0; 

sc_inout<bool> cal0; 

sc_inout<bool> cal3; 

sc_out<bool> ret0; 

sc_out<bool> ret3; 

sc_out<bool> val0; 

int message_0(int);  

int message_1(void) ; 

void message_2(void); 

void message_3(void); 

void message_4(int); 

int message_5(void); 

void process1(); 

void process2(); 

SC_CTOR(system) { 

SC_THREAD(process1); 

sensitive << cal0; 

SC_THREAD(process2); 

sensitive << cal3; 

}}; 

// system.cc 

void message_2(void){ 

// message_2 body} 

 

int message_1(void){ 

// instructions 

message_2() ;  // call to message_2 

// remainig instructions} 

 

int message_0(int) { 

int result; 

// instructions 

Result = message_1(); 

// remaining instructions 

return} 

 

int message_5(void) { 

// instructions 

message_2() ; 

// remaining instructions 

Return} 

 

void message_4(int) { 

int result ; 

// instructions 

Result = message_5() ; 

// remaining instructions} 

 

void message_3(void) { 

int arg ; 

// instructions 

if arg == 1 message_4(arg) ; 

// remaining instructions} 

 

void system::process1() { 

wait(); 

cal0 = 0; 

arg = arg0; 

val0 = message_0(arg); 

ret0 = 1; } 

void system::process2() { 

wait(); 

cal3 = 0; 

message_3(); 

ret3 = 1; } 

 

// main.cc 

#include “system.h” 

int  sc_main(int argc, char* argv[]) { 

sc_signal<bool> CAL0, CAL3, RET0, RET3; 

sc_signal<int> ARG0,VAL0; 

system  sys(“system”);  

sys.arg0(ARG0); 

sys.cal0(CAL0); 

sys.cal3(CAL3); 

sys.ret0(RET0); 

sys.ret3(RET3);  

sys.val0(VAL0); 

return(0); } 

 

4.4     Third technique 

In this technique, each UML object is considered as a VHDL 

(SC_THREAD) process. For each input /output message call, 

we create input/output ports (we add more ports for 

arguments and returned values). Table 3 shows the 

correspondence between UML and VHDL/SystemC 

concepts.  

 

Table 3. Correspondence between UML and 

VHDL/SystemC for the third technique 

UML concept VHDL (behavioral 
/structural) 

SystemC 

Object Process/Entity SC_THREAD 

Input message call Input ports Input ports 

Output message call Output ports Output ports 

External call port port 

Top level model Test bench sc_main() 

 

By applying this technique on the above example, we obtain 

four processes (4): Env, class_0, class_1, and class_2. For 

the sake of the space, we give only the VHDL code for Env 

and class_0. 

entity  usecase_0 is  

port (cal0, cal1, cal2, cal3, cal4, cal5 : inout boolean; arg0, 

arg4 : inout integer; ret0, ret1, ret2, ret3, ret4, ret5 : inout  

boolean; val0, val1, val5 : inout integer); 

end entity usecase_0; 



International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004)     55  
Volume 2, Issue 1, February 2011 

 

 

architecture system of usecase_0 is  

begin 

Env : process is 

variable temp : integer; 

begin 

cal0 <= true; 

arg0 <= 1; 

wait until ret0 = true; 

ret0 <= false; 

temp := val0;  

--code 

cal3 <= true; 

wait until ret3 = true; 

ret3 <= false; 

-- remaining code 

end process Env; 

 

class_0 : process is 

variable  arg, temp : integer; 

begin 

wait until cal0 = true; 

cal0 <= false; 

arg := arg0; 

-- message0 instructions 

cal1 <= true; 

wait until ret1 = true; 

ret1 <= false; 

-- remaining message_0 instructions 

ret0 <= true; 

val0 <= w; 

wait until cal3 = true; 

cal3 <= false; 

-- message3 instructions 

temp := a; 

if temp = 1 then 

cal4 <= true; 

wait until ret4 = true; 

ret4 <= false; 

end if 

-- remaining message_3 instructions 

ret3 <= true; 

end process class_0; 

end architecture system; 

 

For the sake of space, we show only the structure of the Env 

process: 

 

entity  Environment is  

port (cal0, cal3 : out boolean; ret0, ret3 : inout  boolean; 

arg0 : out integer; val0 : in integer); 

end entity Environment; 

 

architecture basic of Environment is  

begin 

Env : process is 

-- Env process code 

end process Env; 

end architecture basic; 

 

architecture struct of usecase_0 is 

signal cal0, cal1, cal2, cal3, cal4, cal5 : boolean; 

signal arg0, arg4, val0, val1, val5 : integer; 

begin 

Envr : entity work.Environment(basic) 

     port map (cal0, cal3, ret0, ret3, arg0, val0); 

clas0 : entity work.class0(basic) 

     port map (cal0, cal1, cal3, cal4, ret0, ret1, ret3, ret4, 

arg0, arg4, val0, val1); 

clas1 : entity work.class1(basic) 

     port map (cal1, cal2, cal4, cal5, ret1, ret2, ret4, ret5, 

arg4, val1, val5); 

clas2 : entity work.class2(basic) 

     port map (cal2, cal5, ret2, ret5, val5); 

end architecture struct; 

 

For the sake of space, we give only the SystemC code for 

Env and class_0. 

 

// system.h 

# include “systemc.h” 

SC_MODULE(system){ 

sc_inout<bool> cal0 ; 

sc_inout<bool> cal1; 

sc_inout<bool> cal2; 

sc_inout<bool> cal3; 

sc_inout<bool> cal4; 

sc_inout<bool> cal5; 

sc_inout<bool> ret0; 

sc_inout<bool> ret1; 

sc_inout<bool> ret2; 

sc_inout<bool> ret3; 

sc_inout<bool> ret4; 

sc_inout<bool> ret5; 

sc_inout<int> arg0, arg4,val0, val1, val5; 

void env(); 

void class_0(); 

void class_1(); 

void class_2(); 

SC_CTOR(system) { 

SC_THREAD(env); 

sensitive << ret0 << ret3 ; 

SC_THREAD(class_0); 

sensitive << cal0 << ret1 << cal3 << ret4 ; 

SC_THREAD(class_1); 

sensitive << cal1 << ret2 << cal4 << ret5 ; 

SC_THREAD(class_2); 

sensitive << cal5 << cal2 ;}}; 

// system.cc 

#include “system.h” 

void system::env() { 

int temp; 

cal0 = 1; 

arg0 = 1; // some initialization 

wait (ret0); 

ret0 = 0; 

temp = val0;  

cal3 = 1; 
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wait (ret3); 

ret3 = 0; 

} 

void system::class_0() { 

int arg, temp; 

wait (cal0); 

cal0 = 0; 

arg = arg0; 

-- message0 instructions 

cal1 = 1; 

wait (ret1); 

ret1 = 0; 

-- remaining message_0 instructions 

ret0 = 1; 

Val0 = w; 

wait (cal3); 

cal3 = 0; 

-- message3 instructions 

temp := a; 

if temp = 1{  

cal4 = 1; 

wait (ret4); 

ret4 = 0;} 

-- remaining message_3 instructions 

ret3 = 1; 

} 

void system::class_1() { 

// body of class_1 

} 

void system::class_2() { 

// body of class_2 

} 

// main.cc 

#include “system.h” 

int  sc_main(int argc, char* argv[]) { 

sc_signal<bool> CAL0, CAL1, CAL2, CAL3, CAL4, CAL5; 

sc_signal<bool> RET0, RET1, RET2, RET3, RET4, RET5; 

sc_signal<int> ARG0,ARG4,VAL0,VAL1, VAL5; 

system sys(“system”); 

sys.arg0(ARG0); 

 sys.arg4(ARG4); 

 sys.val0(VAL0);  

sys.val1(VAL1);  

sys.val5(VAL5);  

sys.cal0(CAL0);  

sys.cal1(CAL1);  

sys.cal2(CAL2);  

sys.cal3(CAL3);  

sys.cal4(CAL4);  

sys.cal5(CAL5);  

sys.ret0(RET0);  

sys.ret1(RET1);  

sys.ret2(RET2);  

sys.ret3(RET3);  

sys.ret4(RET4);  

sys.ret5(RET5); 

return(0) ;} 

 

Table 4 compares between the three techniques. 

 

Table 4. Comparison between the three techniques  

Technique Processes 
Number 

Process 
Granularity 

Communication 
scheme 

First 6 Fine Message Passing 

Second 2 Coarse Shared memory 

Third 4 Coarse Mix 

 

4.5     Modeling with UML activity diagrams 

In our proposed flow (see figure 1), the second step consists 

in internal behaviour modelling of messages using UML 

activity diagrams whose state actions are expressed in the 

Action Language (AL) included in the Rhapsody 

environment. The AL is a subset of C++ that uses a C++ 

compiler to enable the model simulation. This language 

provides message passing, data checking, actions on 

transitions, and model execution. It supports majority of C++ 

operators, if/else, for, while, do/while, return instructions, 

primitive types, array of primitives, objects, invoking block 

operations, generating events, generating port events, testing 

port for an event, etc…figure 6 shows an example of an 

UML activity diagram with an action including three 

assignments written in AL, a call to a message called 

Message_1 belonging to class_0, a condition, and a 

termination state. Note that in our case, only a subset of the 

AL is used. For instance, pointers are not used since existing 

Hardware synthesize tools do not know synthesize pointers to 

hardware. Instead of, we use arrays. VHDL supports a large 

set of operators and control instructions found in AL. Using 

the Rhapsody environment we can perform functional 

simulation before HDL code generation. This step is very 

important in order to validate the HDL code functionality 

against UML functional models. 

 

int x = 1000;

int y = 0;

float Z = 2.5;

val < 1

class_0::Message_1

[No][No]

[yes][yes]

 
 

Figure 6.  Example of UML activity diagram 

 

5. Implementation and case study 

We have used the Rhapsody environment for UML 

modelling and HDL code generation. In order to automate 
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the VHDL/SystemC code generation from UML models, we 

have used the VB API which is integrated in the Rhapsody 

environment. With VB, we can easily parse UML graphical 

models then collect the necessary information to create 

VHDL/SystemC files (see figure 7). We have developed two 

VB macros for SystemC/VHDL codes generation and 

integrated them as tool boxes in the Rhapsody environment. 

As a case study, we have chosen the SDP (Simplex Data 

Protocol) [19] application whose UML sequence diagrams 

are illustrated in figure 8. Figure 9 shows the UML activity 

diagram for the receiver object. Figure 10 gives us an 

overview of SystemC files for the receiver object. 

 

6. Conclusion 

In this paper, we present our approach for automatic 

VHDL/SystemC code generation from UML models at early 

stages of embedded systems development. Our proposed 

flow consists mainly of two steps: generation of 

VHDL/SystemC codes from UML hierarchic sequence 

diagrams then from UML activity diagrams. The generated 

VHDL/SystemC code at the first stage is used for algorithmic 

space exploration and simulation purposes using existing 

commercial simulators. In the second step, we introduce 

UML activity diagrams to model messages internal 

behaviours. Actions of activity diagrams are expressed in the 

C++ Action Language (AL) which is included in the 

Rhapsody environment. From AL, a full VHDL/SystemC 

code is generated for both simulation and synthesis. 

VHDL/SystemC code is generated as text files automatically 

and this is due to the VB API included in the Rhapsody 

environment. In order to enable designer to explore the 

algorithmic space, we proposed three techniques for HDL 

code generation. According to simulation results, the 

designer can restructure his/her system by increasing or 

decreasing the processes number (i.e. merge or scatter 

processes). As a perspective, we plan to investigate the MDA 

approach for VHDL/SystemC code generation from sequence 

diagrams and consider asynchronous events and temporal 

constraints. 

 

 
 

Figure 7.  Programming with VB API 

 

 

:Transmitter

get_data_fromApp(&buffer)

:Timer

start_timer(s.seq)start_timer(s.seq)

send_data_to_channel(&s)

:Channel

send_data_to_channel(&s)

wait_for_event(&event)

get_data_from_channel(s) [event == new_frame]

wait_for_event(&event)

get_data_from_channel(s) [event == new_frame]

:ReceiverENV

get_data_fromApp(&buffer)get_data_fromApp(&buffer)

get_data_fromApp(&buffer)

Receive

Ref

 
 

(a) 

 

:Receiver

wait_for_event(&event)

:Channel

wait_for_event(&event)

get_data_from_channel(s) [event == new_frame]

send_data_to_channel(&s)

get_data_from_channel(s) [event == new_frame]

send_data_to_channel(&s)

ENV

send_data_toApp(&r.info) [r.seq == framenum]send_data_toApp(&r.info) [r.seq == framenum]

 
(b) 

 

Figure 8.  UML sequence diagrams for SDP 



International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004)     58  
Volume 2, Issue 1, February 2011 

 

(a) Main sequence diagram; (b) sequence diagram for receive 

use case. 

 

 

 

get_data_fromApp

int framenum; 

frame s; 

packet buffer; 

event_t event; 

framenum = 1;

true
[Yes]

«loop»

s.info = buffer;

s.seq = 

framenum;

[Yes]

«loop»

Channel::send_data_to_channel

Timer::start_timer

event == new_frame

[No]

[Yes]

Channel::get_data_fromChannel

[Yes]

get_data_fromApp

[No][No]

[No]

 
 

Figure 9.  UML activity diagram for Receiver object 

 

 

 
 

Figure 10.  SystemC code generation from Rhapsody 

UML models  
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