
International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 45
Volume 2, Issue 1, February 2011

Bridging the Gap between UML and Hardware

Description Languages at Early Stages of Embedded

Systems Development

Fateh Boutekkouk
1

1Department of computer science, Larbi Ben M‟hedi University,

BP 358, Route de Constantine, Oum El Bouaghi, 04000, Algeria

fateh_boutekkouk@yahoo.fr

Abstract: This work deals with automatic Hardware Description

Languages (HDLs) code generation from UML 2.0 models at early

stages of embedded systems development. In our case, we target

two standard HDLs which are SystemC and VHDL. A particularity

of our proposed approach is the fact that HDLs code generation

process is performed through two levels of abstraction. In the first

level, we use UML hierarchic sequence diagrams to generate a HDL

code that targets algorithmic space exploration and simulation

eventually. In the second level of abstraction, messages that occur

in sequence diagrams are implemented using UML activity

diagrams whose state actions are expressed in the C++ Action

Language included in the Rhapsody environment from which a full

HDL code is generated for both simulation and synthesis. We have

developed two macros for SystemC and VHDL code generation and

integrated them as tool boxes in the Rhapsdoy environment.

Keywords: Embedded Systems, UML, SystemC, VHDL,

Simulation, Synthesis.

1. Introduction

We can define Embedded Systems (ESs) [9] as application-

specific computers, masquerading as non-computers that

interact with the physical world and must perform a small set

of tasks cheaply and efficiently. ESs have specific

characteristics such as heterogeneity (hardware / software),

ability to react, criticality, real time, and consumption

constraints.

Modern ESs are able to execute very complex algorithms

ranging from control, telecommunication to media high

performance applications implemented in only one chip

(SOC: System-On-a-Chip) [10].

The ever complexity of embedded systems (ESs) design has

pushed researchers in the field to raise the level of

abstraction and exploit recent Software Engineering

technologies such as object technology and in particular the

Unified Modeling Language (UML) [6].

ESs designers are now confronted with the challenge of how

to close the gap between UML and the well practiced

Hardware Description Language (HDL) in ESs world such as

SystemC [20] and VHDL [23].

Since UML was originally introduced in the software field,

most commercial tools generate software code such as C,

C++, and Java from UML models. However, there is a lack

of tools that can synthesize UML models into HDL

descriptions.

Our objective is to raise the level from which HDL

descriptions can be generated to perform quick algorithmic

space exploration, simulation and synthesis eventually. Thus

a refinement directed approach seems inevitable to bridge the

gap smoothly between UML models and HDLs descriptions.

To address this problem, we have proposed a flow that

permits automatic HDL code generation from UML models

at two levels of abstraction. The first level corresponds to

HDL code generation from UML sequence diagrams without

implementing messages. Thus the code generated at this

stage is oriented to algorithmic space exploration and

simulation eventually since the obtained code consists only of

processes input/output ports, processes sensitivity lists,

dependencies between processes, and signals. The second

level of abstraction is viewed as a refinement of the first level

where messages are implemented using UML activity

diagrams whose actions are expressed in the C++ Action

Language included in the Rhapsody environment [15]. At

this stage, the generated code is dedicated to both simulation

and synthesis. In this paper, our main contribution is the

development of a tool that can generate SystemC and VHDL

code from UML models following a refinement directed

approach. The rest of this paper is organized as follows:

section two is dedicated to related works concerning the

synthesis of UML models to SystemC and VHDL code.

Section three gives an overview of VHDL and SystemC

languages. Our proposed flow with an illustrative example is

discussed in section four. The implementation of our tool and

a case study is discussed in section five before concluding.

2. Related Work

In this section, we try to present briefly some pertinent woks

targeting the generation of VHDL and SystemC codes from

UML models.

The authors in [9] proposed the synthesis of state diagrams

into VHDL.

In [12], the authors presented a technique for generating

VHDL descriptions from a subset of UML, and a set of rules

to transform UML classes and Statecharts to VHDL.

The authors in [4] and [5] used SMDL (the language with

formal semantics and high-level concepts such as states,

queues and events) as an intermediary language to generate

VHDL code from UML Statecharts and activity diagrams.

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 46
Volume 2, Issue 1, February 2011

A Model Driven Architecture (MDA) approach for

generating VHDL code from UML models was proposed in

[1], [8], and [17]. In [8], the authors used UML Meta-model

to generate different platform specific implementations.

In [17], the authors defined a set of rules to map UML to

VHDL in a practical code generator.

In [16], the authors presented a UML/SystemC profile for

SystemC code generation from UML structural and

Statecharts diagrams.

In [21], the authors developed a tool for UML synthesis

called: Chip Fryer that can generate VHDL code from XMI

representation of UML models. The input model consists of

class, object diagrams, and state machines. Actions are

expressed in a C++ action language.

In [24], the authors proposed a UML/MDA approach called

MoPCoM methodology that permits automatic VHDL and

SystemC code generation from UML models and MARTE

profile by means of MDA techniques. Input models are

focused on UML class, component, and Statecharts diagrams.

Contrary to these works, our approach tries to generate

VHDL and SystemC codes automatically at early stages of

ESs development from UML sequence diagrams in a first

step then from UML activity diagrams in a second step.

3. VHDL and SystemC

 3.1 VHDL

VHDL (VHSIC Hardware Description Language) [2], [3],

[23] is an industrial standard HDL. It looks similar to

programming language ADA and used for both simulation

and synthesis.

Now VHDL is governed by IEEE standards and very popular

for European design houses. VHDL models consist of an

external part (entity) that defines the Inputs/Outputs of the

model and the internal part that describes the operation of the

model (the architecture). The Entity declaration format looks

like:

entity entity_name is

port (signal_name(s): mode signal_type;

:

signal_name(s): mode signal_type);

end entity entity_name;

mode describes the direction of transferred data through port

(in, out, or inout); signal_type defines the signal(s) type.

The Architecture format looks like:

architecture architecture_name of entity_name is

begin

:

end architecture architecture_name;

VHDL designs can be written in three different styles:

structural, data flow, and behavioural. Of course, these three

styles can be mixed. Structural descriptions describe the

interconnection of hierarchy and are useful for designs reuse.

They consist of component instantiation statements (i.e. port

map instruction) which are concurrent statements.

Behavioural descriptions are focused on the process concept.

The latter is used in two ways:

For combinational logic, we mention the list of all process

input signals after the keyword process. The general form is:

process (signal_names)

begin

.....

end process;

For sequential logic, two cases occur:

In the first case, the sensitivity list is empty, but statements

inside the process must include wait statements;

In the second case, the sensitivity list contains the clock

signal and the statements are within an if statement.

The general form is as follows:

process (clock)

begin

if clock and clock'event then

....

end if;

end process;

Processes communicate via signals. Many processes can be

put in one architecture. VHDL supports classical language

data types such as: boolean, character, integer, real, and

string and control statements such as if, loop, and case. In

addition, VHDL has the types: bit, bit_vector, and the IEEE

1164-standard-logic types that are std_logic and

std_logic_vector. For more details on VHDL, one can refer

to [23].

 3.2 SystemC

SystemC [18], [19], [20] is an extension of C++ language for

SOC modeling and simulation. Various versions of the

language have appeared but we consider SystemC2.0.

SystemC structural designs are focused on modules. A

module contains ports, interfaces, channels, processes, and

eventually other modules. In SystemC, concurrent behaviors

are modeled using processes. A process has a sensitivity list

that includes the set of signals to which it is sensitive. This

list can be either static (pre-specified before simulation

starts) or dynamic.

SystemC processes execute concurrently and may suspend on

wait() statements. Such processes requiring their own

independent execution stack are called “SC_THREADs”.

When the only signal triggering a process is the clock signal

„clk‟ we obtain what we call “SC_CTHREAD” (clocked

thread process). Certain processes do not actually require an

independent execution stack and cannot suspended on wait()

statement. Such processes are termed “SC_METHODs”.

SC_METHOD processes execute in zero simulation time and

returns control back to the simulation kernel.

The following code [19] presents a SystemC module named

display with an input port din, and an SC_METHOD called

print_data which is sensible to din. For each SystemC

module there are two files: .h for ports, functions, variables,

and processes declaration and .cc for process and functions

implementation. systemc.h designates the SystemC library

file.

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 47
Volume 2, Issue 1, February 2011

// display.h

#include "systemc.h"

#include "packet.h"

SC_MODULE(display) {

sc_in<long> din; // input port

void print_data();

// Constructor

SC_CTOR(display) {

SC_METHOD(print_data); // Method process to print data

sensitive << din;

}

};

// display.cc

#include "display.h"

void display::print_data() {

cout <<"Display:Data Value Received, Data = "<< din <<

"\n";

4. Our proposed flow

As showed in figure 1, our proposed flow starts by capturing

system requirements as a set of related uses cases and actors.

At this stage, we use UML uses cases with „include‟ and

„extend‟ relations. Figure 2 gives an example of modelling

with use cases diagram. In this example, we have one actor

and two use cases named usecase_0 and usecase_1.

usecase_0 is related to usecase_1 by the „include‟ relation.

Each use case diagram is then refined into a set of interacting

objects showing a possible scenario. At this stage, we use

UML sequence diagram. The „include‟ relation is modelled

as an unconditional call of the use case child while the

„extend‟ relation is an optional call subject to some

condition. Figure 3 shows a possible implementation of use

cases using hierarchic sequence diagrams. In this example,

we model usecase_0 as the parent use case using sequence

diagram with three interacting objects (class‟s instances)

class_0, class_1, and class_2 and an external object that

represents the environment (Env). usecase_1 is modelled as a

child sequence diagram invoking by a call from the

environment. In order to model the „extend‟ relation, we add

a conditional call invoking the child sequence diagram

(usecase_2 in figure 4). From UML sequence diagrams,

VHDL and SystemC codes are generated automatically using

the VB API which is integrated in the Rhapsody

environment. This API offers the necessary functions and

commands that permit the manipulation of UML diagrams

and then the extraction of information needed for HDL code

generation as text files. The generated code in this step will

be used for algorithmic space exploration and simulation

eventually.

We have used three techniques for HDL code generation

process:

1
st
 technique: each message is considered as a VHDL

process/SystemC SC_METHOD.

2
nd

 technique: each end-to-end scenario is considered as a

VHDL process/ SystemC SC_THREAD.

3
rd

 technique: each object is considered as a VHDL process/

SystemC SC_THREAD.

For each technique, two styles of VHDL descriptions are

generated: structural using VHDL mapping instructions and

behavioural using the VHDL process concept. Dashed lines

in figure 2 enable the designer to modify his/her design

according to simulation results. VHDL/SystemC simulation

and/or synthesis are performed using available commercial

tools such as ModelSim (ModelSim) or SystemC simulator.

Figure 1. Our proposed flow

actoractor

usecase_0

usecase_1

«include»«include»

Figure 2. Example of UML use cases diagram

:class_0

Message_0(x)

ENV

Message_0(x)

:class_1 :class_2

usecase_1

Ref

Figure 3. Possible implementation of „include‟ relation

System Requirements

Modelling using

UML Use Cases Diagrams

Each Use Case is

Implemented using

UML Sequence

Diagram

Refinement (Manually)

Automatic VHDL&

SystemC code

(Algorithmic

Space exploration,

Simulation)

Each Method is

modelled using UML

Activity Diagram whose

actions are implemented

in Action Language

Automatic VHDL&

SystemC code

Generation

For Simulation and

Synthesis

Refinement (Manually)

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 48
Volume 2, Issue 1, February 2011

:class_0

Message_0(x) [x ==1]

ENV

Message_0(x) [x ==1]

:class_1 :class_2

usecase_2

Ref

Figure 4. Possible implementation of „extend‟ relation

4.1 Illustrative example

In order to motivate our proposed approach, we try to apply

the HDL code generation process on an example whose use

case diagram is illustrated in figure 2. In this example, we

assume that we have an actor and two use cases named

usecase_0 and usecase_1 that are related by an „include‟

relation. Both usecase_0 and usecase_1 are implemented

using UML sequence diagrams as showed in figure 5. In the

following sections, we try to explain the three techniques for

VHDL/SystemC code generation from UML sequence

diagrams.

4.2 First technique

In this technique, each message is mapped to a VHDL

process or a SystemC SC_METHOD.

Methods arguments are transformed to input ports while

returned values are mapped to output ports. To each call to a

message, we add a Boolean input port that corresponds to the

event to which process is sensible and a Boolean output port

that corresponds to control return. From figure 5, we observe

that message_2 is used in both usecase_0 and usecase_1.

Such a common message will be mapped to a SC_METHOD

process in a separate module. Two styles of VHDL

descriptions are generated: the behavioural description and

structural description. In the former, all generated processes

from children sequence diagrams are put in one architecture

that corresponds to the main sequence diagram. In the latter,

we consider children sequence diagrams as sub entities

reflecting the hierarchy of the design. Table 1 shows the

correspondence between UML and VHDL/SystemC

concepts.

:class_0ENV

w =Message_0(x)

Message_3()

w =Message_0(x)

Message_3()

z =Message_1()

:class_1

z =Message_1()

Message_2()

:class_2

Message_2()

usecase_1

Ref

(a)

:class_2

Message_2()Message_2()

:class_1

b =Message_5()b =Message_5()

Message_4(a) [a == 1]

:class_0

Message_4(a) [a == 1]

(b)

Figure 5. Example of hierarchic sequence diagrams

(a) parent sequence diagram (usecase_0); (b) child sequence

diagram (usecase_1)

Assume that we have a message with two integer arguments

(a and b) and an integer return value (x): x = message(a,b).

The corresponding VHDL code for this message is as

follows:

message : process is

variable arg1, arg2, result : integer;

begin

wait until cal = true; -- cal read

cal <= false; -- cal write

arg1 := a;

arg2 := b;

-- message body

x <= result; -- x write

ret <= true; -- ret write

end process message;

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 49
Volume 2, Issue 1, February 2011

Table 1. Correspondence between UML and

VHDL/SystemC for the first technique

UML concept VHDL (behavioral
/structural)

SystemC

Message Process/Entity SC_METHOD

Common message Process/Entity SC_METHOD in a

separate module

Argument in port sc_in <type> port

Returned value out port sc_out <type> port

call inout port (boolean) sc_inout <bool> port

Control return out port (boolean) sc_out <bool> port

Child sequence
diagram

sub entity (structural) sub module

Top level model Test bench sc_main()

arg1 and arg2 are two variables used to stock the two

arguments coming from the two ports (signals) a and b.

result is a variable used to stock the returned value in the port

x. We use the Boolean ports cal and ret to specify the

message invoking and the return of the control to the caller

respectively. The meaning of this VHDL code is as follows:

The process message will be blocked until the occurrence of

the signal cal (cal = true). After that, the process resumes its

execution: sets cal to false; stock the arguments coming from

the input ports a and b into variables arg1 and arg2;

performs some computations; stocks the result of

computation into output port x; sets the signal ret to true.

Similarly, The VHDL code for the caller looks like:

caller : process is

variable val : integer;

begin

-- instructions

cal <= true; -- cal write

a <= “ “; -- initialization

b <= “ “;

wait until ret = true; -- ret read

ret <= false; -- ret write

val:= x; -- x read

-- Remaining instructions

end process caller;

The meaning of this VHDL code is as follows:

After performing some computations, the process caller sets

the signal cal to true; initializes the arguments ports a and b;

blocked until the occurrence of the signal ret (ret = true).

After that, the process resumes its execution: sets ret to false;

stocks the content of port x into variable val; performs the

remaining computation.

The corresponding SystemC code for this message is as

follows:

// module1.h

include “systemc.h”

SC_MODULE(module1){

sc_in<int> a;

sc_in<int> b;

sc_out<int> x;

sc_inout<bool> cal;

sc_out<bool> ret;

void message();

SC_CTOR(module1) {

SC_METHOD(message);

sensitive << cal; }};

// module1.cc

#include “module1.h”

void module1::message() {

int var1, var2, result;

while cal == 0 ;

cal = 0; // cal = false;

var1 = a;

var2 = b;

// message body

x = result;

ret = 1; } // ret = true;

SC_METHOD message is sensitive to the signal cal.

The SystemC code for the caller is as follows:

// module2.h

include “systemc.h”

SC_MODULE(module2){

sc_in<int> x;

sc_inout<bool> ret;

sc_out<int> a;

sc_out<int> b;

sc_out<bool> cal;

void caller();

SC_CTOR(module2) {

SC_METHOD(caller);

sensitive << ****; // some ports

}};

// module2.cc

#include “module2.h”

void module2::caller() {

int result;

// instructions;

cal = 1; // cal = true;

a = “ ”; // arguments initialization

b = “ ”;

While ret == 0 ;

ret = 0;

result = x;

// remaining instructions

}

Note that SC_METHOD processes message and caller are

put in two distinct modules: module1 and module2

respectively. However, if we put them into one module, all

ports become sc_inout.

By applying this technique on our example, we obtain six (6)

VHDL processes and six SC_METHOD processes that are:

Message_0, Message_1, Message_2, Message_3,

Message_4, and Message_5. In the VHDL behavioural style,

all processes are put in one architecture. The entity includes

all processes ports. Assume that all messages arguments and

return values are integers. cal0, cal1, cal2, cal3, cal4, and

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 50
Volume 2, Issue 1, February 2011

cal5 designate Boolean ports for message_0, message_1,

message_2, message_3 message_4, and message_5 calls

respectively. arg0 and arg4 designate ports for message_0

and message_4 arguments respectively. val0, val1, and val5

designate ports for message_0, message_1, and message_5

returned values respectively. ret0, ret1, ret2, ret3, ret4, and

ret5 designate Boolean ports for messages controls return.

The corresponding VHDL code for the behavioural

description is as follows:

entity usecase_0 is

port (cal0, cal1, cal2, cal3, cal4, cal5 : inout boolean; arg0 :

in integer; arg4 : inout integer; ret0, ret1, ret2, ret3, ret4,

ret5 : inout boolean; val0: out integer; val1, val5 : inout

integer);

end entity usecase_0;

architecture system of usecase_0 is

begin

message_0 : process is

variable arg, val : integer;

begin

wait until cal0 = true;

cal0 <= false;

arg := arg0;

-- instructions

cal1 <= true ;

wait until ret1 = true ;

ret1 <= false ;

val := val1;

-- remaining instructions

val0 <= w;

ret0 <= true ;

end process message_0;

message_1 : process is

begin

wait until cal1 = true;

cal1 <= false;

-- instructions

cal2 <= true;

wait until ret2 = true;

ret2 <= false;

-- remaining instructions

val1 <= z;

ret1 <= true;

end process message_1;

message_2 : process is

begin

-- code

end process message_2;

message_3 : process is

variable temp : integer;

begin

wait until cal3 = true;

cal3 <= false;

-- instructions

if temp = 1 then

cal4 <= true;

arg4 <= temp;

wait until ret4 = true;

ret4 <= false;

end if

-- remaining instructions

ret3 <= true;

end process message_3;

message_4 : process is

-- code

end process message_4;

message_5 : process is

begin

-- code

end process message_5;

end architecture system;

The VHDL structural style is obtained by considering each

process as a separate entity as well as all children sequence

diagrams. For the sake of space, we do not show all messages

VHDL code, rather than, we give the VHDL code only for

message_0.

entity message0 is

port (cal0 : inout boolean, cal1: out boolean; ret0 : out

boolean, ret1: inout boolean; arg0 : in integer; val0 : out

integer; val1 : in integer);

end entity message0;

architecture basic of message0 is

begin

message_0 : process is

variable arg, val : integer;

begin

wait until cal0 = true;

cal0 <= false;

arg := arg0;

-- instructions

cal1 <= true ;

wait until ret1 = true ;

ret1 <= false ;

val:= val1;

-- remaining instructions

val0 <= w;

ret0 <= true ;

end process message_0;

end architecture basis;

entity usecase_1 is

port (cal4 : inout boolean; arg4 : in integer; ret4 : out

boolean);

end entity usecase_1;

architecture struct of usecase_1 is

signal cal2, cal5, ret2, ret5 : boolean

signal val5 : integer;

begin

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 51
Volume 2, Issue 1, February 2011

messag2 : entity work.message2(basic)

 port map (cal2,ret2);

messag4 : entity work.message4(basic)

 port map (cal4,cal5,ret4,ret5,arg4,val5);

messag5 : entity work.message5(basic)

 port map (cal5,cal2,ret5, ret2, val5);

end architecture struct;

architecture struct of usecase_0 is

signal ret1, cal1, cal2, ret2, cal4, ret4 : boolean;

signal arg4, val1 : integer;

begin

messag0 : entity work.message0(basic)

 port map (cal0, cal1, ret0, ret1,arg0, val0, val1);

messag1 : entity work.message1(basic)

 port map (cal1,ret2,ret1,cal2, val1);

messag2 : entity work.message2(basic)

 port map (cal2,ret2);

messag3 : entity work.message3(basic)

 port map (cal3, cal4, ret4,ret3, arg4);

usecase1: entity work.usecase_1(struct)

 port map (cal4,arg4,ret4);

end architecture struct;

entity test_bench is

end entity test_bench;

architecture test_usecase_0 of test_bench is

signal cal0, cal3, ret0, ret3 : boolean;

signal arg0, val0 : integer;

begin

usecase0 : entity work.usecase_0(struct)

 port map(cal0, ret0, arg0, val0, cal3, ret3) ;

stimulus : process is

begin

cal0 <= true ;

ret0 <= false;

arg0 <= 500;

val0 <= 0;

cal3 <= true ;

ret3 <= true ;

end process stimulus;

end architecture test_usecase_0;

Since message_2 is a common message, we put it in a

separate module called mess2. Here, we have two modules:

usecase0 including SC_METHODS message_0, message_1,

and message_3, and usecase1including message_4, and

message_5.

The corresponding SystemC code is as follows:

// mess2.h

include “systemc.h”

SC_MODULE(mess2){

sc_inout<bool> cal2;

sc_out<bool> ret2;

void message_2();

SC_CTOR(mess2) {

SC_METHOD(message_2);

sensitive << cal2;

}};

// mess2.cc

#include “mess2.h”

void mess2::message_2() {

while cal2 == 0 ;

cal2 = 0;

// message body;

ret2 = 1;}

// usecase1.h

include “systemc.h”

SC_MODULE(usecase1){

sc_in<int> arg4;

sc_inout<int> val5;

sc_out<bool> cal2;

sc_inout<bool> ret2;

sc_inout<bool> cal4;

sc_inout<bool> cal5;

sc_inout<bool> ret5;

sc_out<bool> ret4;

void message_4();

void message_5();

SC_METHOD(message_4);

sensitive << cal4;

SC_METHOD(message_5);

sensitive << cal5;

}};

// usecase1.cc

void usecase1::message_4() {

int var, result;

while cal4 == 0;

cal4 = 0;

var = arg4;

// instructions

cal5 = 1;

while ret5 == 0;

ret5 = 0;

result = val5;

// remaining instructions

ret4 = 1;

}

void usecase1::message_5() {

// code

}

// usecase0.h

include “systemc.h”

SC_MODULE(usecase0){

sc_in<int> arg0;

sc_inout<int> arg4;

sc_out<int> val0;

sc_inout<int> val1;

sc_inout<bool> cal0;

sc_inout<bool> cal1;

sc_out<bool> cal2;

sc_inout<bool> cal3;

sc_out<bool> cal4;

sc_out<bool> ret0;

sc_inout<bool> ret1;

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 52
Volume 2, Issue 1, February 2011

sc_inout<bool> ret2;

sc_out<bool> ret3;

sc_inout<bool> ret4;

void message_0();

void message_1();

void message_3();

SC_CTOR(usecase0) {

SC_METHOD(message_0);

sensitive << cal0;

SC_METHOD(message_1);

sensitive << cal1;

SC_METHOD(message_3);

sensitive << cal3;

}};

// usecase0.cc

#include “usecase0.h”

void usecase0::message_0() {

 // code

};

void usecase1::message_1() {

// code

};

void usecase1::message_3() {

int var;

while cal3 == 0 ;

cal3 = 0;

// instructions

arg4 = var;

if arg4 = 1 {

cal4 = 1;

while ret4 == 0;

ret4 = 0;

}

// remaining instructions

ret3 = 1;

};

// main.cc

#include “mess2.h”

#include “usecase1.h”

#include “usecase0.h”

int sc_main(int argc, char* argv[]) {

sc_signal<int> ARG0, ARG4, VAL0, VAL1;

sc_signal<bool> CAL0, CAL1, CAL2, CAL3, CAL4, CAL5 ;

sc_signal<bool> RET0, RET1, RET2, RET3, RET4, RET5 ;

mess2 ms2(“mess2”);

 ms2.cal2(CAL2);

ms2.ret2(RET2);

usecase1 uc1(“usecase1”);

uc1.arg4(ARG4);

 uc1.val5(VAL5);

 uc1.cal2(CAL2);

uc1.cal4(CAL4);

uc1.cal5(CAL5);

uc1.ret2(RET2);

uc1.ret4(RET4);

uc1.ret5(RET5);

usecase0 uc0(“usecase0”);

uc0.arg0(ARG0);

uc0.arg4(ARG4);

uc0.val0(VAL0);

uc0.val1(VAL1);

uc0.cal0(CAL0);

uc0.cal1(CAL1);

uc0.cal2(CAL2);

uc0.cal3(CAL3);

uc0.cal4(CAL4);

uc0.ret0(RET0);

uc0.ret1(RET1);

uc0.ret2(RET2);

uc0.ret3(RET3);

uc0.ret4(RET4);

return(0);}

4.3 Second technique

In this technique, we consider each end-to-end scenario as a

VHDL process (SystemC SC_THREAD). An end-to-end

scenario is a sequence of methods that are invoked by an

external call from the environment. In this case, all processes

communicate via shared variables. Table 2 shows the

correspondence between UML and VHDL/SystemC

concepts. All internal methods are implemented as VHDL

procedures or functions. Since the same method may be

called by many processes, we have to declare such methods

globally in a VHDL package. We create ports only for

external calls coming or returned values to the environment.

Table 2. Correspondence between UML and

VHDL/SystemC for the second technique

UML concept VHDL (behavioral
/structural)

SystemC

End to end scenario Process/Entity SC_THREAD

Internal message
without returned

value

procedure C++ function

Internal message
with a returned

value

function C++ function

External call port port

Top level model Test bench sc_main()

By applying this technique on the above example, we obtain

two VHDL processes: process1 including the sequence of

messages: message_0, message_1, and message_2 and

process2 including message_3, message_4, message_5, and

message_2. We observe that message_2 is called by both

process_1 and process_2. Thus message_2 is declared

globally in a package. We use the use clause to import all

messages defined in the package. work designates the user

library where are stocked files resulting from VHDL code

simulation.

package pack is

procedure message_2;

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 53
Volume 2, Issue 1, February 2011

end package pack;

package body pack is

procedure message_2 is

begin

-- message_2 body

end procedure message_2;

end package body pack;

The VHDL behavioral style for the two processes is as

follows:

entity usecase_0 is

port (cal0, cal3 : inout boolean; arg0 : in integer; ret0, ret3

: out boolean; val0 : out integer);

end entity usecase_0;

architecture system of usecase_0 is

library work;

use work.pack.all;

begin

process1 : process is

function message_1 return integer is

variable result : integer;

begin

-- message_1 body

message_2; -- call to message_2;

-- remaining instructions

return result;

end function message_1;

function message_0(arg : in integer) return integer is

variable ret1, result : integer;

begin

-- message_0 body

ret1 = message_1; -- call to message_1

return result;

end function message_0;

-- process code

variable arg;

begin

wait until cal0 = true;

cal0 <= false;

arg := arg0;

val0 <= message_0(arg)

ret0 <= true;

end process process1;

process2 : process is

function message_5 return integer is

variable result : integer;

begin

-- message_5 body

message_2; -- call to message_2;

-- remaining instructions

return result;

end function message_5;

procedure message_4 (arg : in integer) is

variable result : integer;

begin

-- message_4 body

Result := message_5; -- call to message_5;

-- remaining instructions

end procedure message_4;

procedure message_3 is

variable result arg : integer;

begin

-- message_3 body

arg := arg4;

result := message_4(); -- call to message_4;

-- remaining instructions

end procedure message_3;

begin

-- process code

begin

wait until cal3 = true;

cal3 <= false;

message_3;

ret3 <= true;

end process process2;

end architecture;

The VHDL structural style for the two processes is as

follows:

entity proc1 is

port (cal0 : in boolean; arg0 : in integer; ret0 : out

boolean; val0 : out integer);

end entity proc1;

architecture basic of proc1 is

begin

process1 : process is

-- process1 body

end process process1;

end architecture basis;

entity proc2 is

port (cal3 : in boolean; ret3 : out boolean);

end entity proc2;

architecture basic of proc2 is

begin

process2 : process is

-- process2 body

end process process1;

end architecture basis;

architecture struct of usecase_0 is

begin

proces0 : entity work.proc0(basic)

 port map (cal0,arg0, ret0,val0);

proces1 : entity work.proc2(basic)

 port map (cal3,ret3);

end architecture struct;

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 54
Volume 2, Issue 1, February 2011

The test bench architecture is the same as in the first

technique. The corresponding SystemC code is as follows:

// system.h

include “systemc.h”

SC_MODULE(system){

sc_in<int> arg0;

sc_inout<bool> cal0;

sc_inout<bool> cal3;

sc_out<bool> ret0;

sc_out<bool> ret3;

sc_out<bool> val0;

int message_0(int);

int message_1(void) ;

void message_2(void);

void message_3(void);

void message_4(int);

int message_5(void);

void process1();

void process2();

SC_CTOR(system) {

SC_THREAD(process1);

sensitive << cal0;

SC_THREAD(process2);

sensitive << cal3;

}};

// system.cc

void message_2(void){

// message_2 body}

int message_1(void){

// instructions

message_2() ; // call to message_2

// remainig instructions}

int message_0(int) {

int result;

// instructions

Result = message_1();

// remaining instructions

return}

int message_5(void) {

// instructions

message_2() ;

// remaining instructions

Return}

void message_4(int) {

int result ;

// instructions

Result = message_5() ;

// remaining instructions}

void message_3(void) {

int arg ;

// instructions

if arg == 1 message_4(arg) ;

// remaining instructions}

void system::process1() {

wait();

cal0 = 0;

arg = arg0;

val0 = message_0(arg);

ret0 = 1; }

void system::process2() {

wait();

cal3 = 0;

message_3();

ret3 = 1; }

// main.cc

#include “system.h”

int sc_main(int argc, char* argv[]) {

sc_signal<bool> CAL0, CAL3, RET0, RET3;

sc_signal<int> ARG0,VAL0;

system sys(“system”);

sys.arg0(ARG0);

sys.cal0(CAL0);

sys.cal3(CAL3);

sys.ret0(RET0);

sys.ret3(RET3);

sys.val0(VAL0);

return(0); }

4.4 Third technique

In this technique, each UML object is considered as a VHDL

(SC_THREAD) process. For each input /output message call,

we create input/output ports (we add more ports for

arguments and returned values). Table 3 shows the

correspondence between UML and VHDL/SystemC

concepts.

Table 3. Correspondence between UML and

VHDL/SystemC for the third technique

UML concept VHDL (behavioral
/structural)

SystemC

Object Process/Entity SC_THREAD

Input message call Input ports Input ports

Output message call Output ports Output ports

External call port port

Top level model Test bench sc_main()

By applying this technique on the above example, we obtain

four processes (4): Env, class_0, class_1, and class_2. For

the sake of the space, we give only the VHDL code for Env

and class_0.

entity usecase_0 is

port (cal0, cal1, cal2, cal3, cal4, cal5 : inout boolean; arg0,

arg4 : inout integer; ret0, ret1, ret2, ret3, ret4, ret5 : inout

boolean; val0, val1, val5 : inout integer);

end entity usecase_0;

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 55
Volume 2, Issue 1, February 2011

architecture system of usecase_0 is

begin

Env : process is

variable temp : integer;

begin

cal0 <= true;

arg0 <= 1;

wait until ret0 = true;

ret0 <= false;

temp := val0;

--code

cal3 <= true;

wait until ret3 = true;

ret3 <= false;

-- remaining code

end process Env;

class_0 : process is

variable arg, temp : integer;

begin

wait until cal0 = true;

cal0 <= false;

arg := arg0;

-- message0 instructions

cal1 <= true;

wait until ret1 = true;

ret1 <= false;

-- remaining message_0 instructions

ret0 <= true;

val0 <= w;

wait until cal3 = true;

cal3 <= false;

-- message3 instructions

temp := a;

if temp = 1 then

cal4 <= true;

wait until ret4 = true;

ret4 <= false;

end if

-- remaining message_3 instructions

ret3 <= true;

end process class_0;

end architecture system;

For the sake of space, we show only the structure of the Env

process:

entity Environment is

port (cal0, cal3 : out boolean; ret0, ret3 : inout boolean;

arg0 : out integer; val0 : in integer);

end entity Environment;

architecture basic of Environment is

begin

Env : process is

-- Env process code

end process Env;

end architecture basic;

architecture struct of usecase_0 is

signal cal0, cal1, cal2, cal3, cal4, cal5 : boolean;

signal arg0, arg4, val0, val1, val5 : integer;

begin

Envr : entity work.Environment(basic)

 port map (cal0, cal3, ret0, ret3, arg0, val0);

clas0 : entity work.class0(basic)

 port map (cal0, cal1, cal3, cal4, ret0, ret1, ret3, ret4,

arg0, arg4, val0, val1);

clas1 : entity work.class1(basic)

 port map (cal1, cal2, cal4, cal5, ret1, ret2, ret4, ret5,

arg4, val1, val5);

clas2 : entity work.class2(basic)

 port map (cal2, cal5, ret2, ret5, val5);

end architecture struct;

For the sake of space, we give only the SystemC code for

Env and class_0.

// system.h

include “systemc.h”

SC_MODULE(system){

sc_inout<bool> cal0 ;

sc_inout<bool> cal1;

sc_inout<bool> cal2;

sc_inout<bool> cal3;

sc_inout<bool> cal4;

sc_inout<bool> cal5;

sc_inout<bool> ret0;

sc_inout<bool> ret1;

sc_inout<bool> ret2;

sc_inout<bool> ret3;

sc_inout<bool> ret4;

sc_inout<bool> ret5;

sc_inout<int> arg0, arg4,val0, val1, val5;

void env();

void class_0();

void class_1();

void class_2();

SC_CTOR(system) {

SC_THREAD(env);

sensitive << ret0 << ret3 ;

SC_THREAD(class_0);

sensitive << cal0 << ret1 << cal3 << ret4 ;

SC_THREAD(class_1);

sensitive << cal1 << ret2 << cal4 << ret5 ;

SC_THREAD(class_2);

sensitive << cal5 << cal2 ;}};

// system.cc

#include “system.h”

void system::env() {

int temp;

cal0 = 1;

arg0 = 1; // some initialization

wait (ret0);

ret0 = 0;

temp = val0;

cal3 = 1;

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 56
Volume 2, Issue 1, February 2011

wait (ret3);

ret3 = 0;

}

void system::class_0() {

int arg, temp;

wait (cal0);

cal0 = 0;

arg = arg0;

-- message0 instructions

cal1 = 1;

wait (ret1);

ret1 = 0;

-- remaining message_0 instructions

ret0 = 1;

Val0 = w;

wait (cal3);

cal3 = 0;

-- message3 instructions

temp := a;

if temp = 1{

cal4 = 1;

wait (ret4);

ret4 = 0;}

-- remaining message_3 instructions

ret3 = 1;

}

void system::class_1() {

// body of class_1

}

void system::class_2() {

// body of class_2

}

// main.cc

#include “system.h”

int sc_main(int argc, char* argv[]) {

sc_signal<bool> CAL0, CAL1, CAL2, CAL3, CAL4, CAL5;

sc_signal<bool> RET0, RET1, RET2, RET3, RET4, RET5;

sc_signal<int> ARG0,ARG4,VAL0,VAL1, VAL5;

system sys(“system”);

sys.arg0(ARG0);

 sys.arg4(ARG4);

 sys.val0(VAL0);

sys.val1(VAL1);

sys.val5(VAL5);

sys.cal0(CAL0);

sys.cal1(CAL1);

sys.cal2(CAL2);

sys.cal3(CAL3);

sys.cal4(CAL4);

sys.cal5(CAL5);

sys.ret0(RET0);

sys.ret1(RET1);

sys.ret2(RET2);

sys.ret3(RET3);

sys.ret4(RET4);

sys.ret5(RET5);

return(0) ;}

Table 4 compares between the three techniques.

Table 4. Comparison between the three techniques

Technique Processes
Number

Process
Granularity

Communication
scheme

First 6 Fine Message Passing

Second 2 Coarse Shared memory

Third 4 Coarse Mix

4.5 Modeling with UML activity diagrams

In our proposed flow (see figure 1), the second step consists

in internal behaviour modelling of messages using UML

activity diagrams whose state actions are expressed in the

Action Language (AL) included in the Rhapsody

environment. The AL is a subset of C++ that uses a C++

compiler to enable the model simulation. This language

provides message passing, data checking, actions on

transitions, and model execution. It supports majority of C++

operators, if/else, for, while, do/while, return instructions,

primitive types, array of primitives, objects, invoking block

operations, generating events, generating port events, testing

port for an event, etc…figure 6 shows an example of an

UML activity diagram with an action including three

assignments written in AL, a call to a message called

Message_1 belonging to class_0, a condition, and a

termination state. Note that in our case, only a subset of the

AL is used. For instance, pointers are not used since existing

Hardware synthesize tools do not know synthesize pointers to

hardware. Instead of, we use arrays. VHDL supports a large

set of operators and control instructions found in AL. Using

the Rhapsody environment we can perform functional

simulation before HDL code generation. This step is very

important in order to validate the HDL code functionality

against UML functional models.

int x = 1000;

int y = 0;

float Z = 2.5;

val < 1

class_0::Message_1

[No][No]

[yes][yes]

Figure 6. Example of UML activity diagram

5. Implementation and case study

We have used the Rhapsody environment for UML

modelling and HDL code generation. In order to automate

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 57
Volume 2, Issue 1, February 2011

the VHDL/SystemC code generation from UML models, we

have used the VB API which is integrated in the Rhapsody

environment. With VB, we can easily parse UML graphical

models then collect the necessary information to create

VHDL/SystemC files (see figure 7). We have developed two

VB macros for SystemC/VHDL codes generation and

integrated them as tool boxes in the Rhapsody environment.

As a case study, we have chosen the SDP (Simplex Data

Protocol) [19] application whose UML sequence diagrams

are illustrated in figure 8. Figure 9 shows the UML activity

diagram for the receiver object. Figure 10 gives us an

overview of SystemC files for the receiver object.

6. Conclusion

In this paper, we present our approach for automatic

VHDL/SystemC code generation from UML models at early

stages of embedded systems development. Our proposed

flow consists mainly of two steps: generation of

VHDL/SystemC codes from UML hierarchic sequence

diagrams then from UML activity diagrams. The generated

VHDL/SystemC code at the first stage is used for algorithmic

space exploration and simulation purposes using existing

commercial simulators. In the second step, we introduce

UML activity diagrams to model messages internal

behaviours. Actions of activity diagrams are expressed in the

C++ Action Language (AL) which is included in the

Rhapsody environment. From AL, a full VHDL/SystemC

code is generated for both simulation and synthesis.

VHDL/SystemC code is generated as text files automatically

and this is due to the VB API included in the Rhapsody

environment. In order to enable designer to explore the

algorithmic space, we proposed three techniques for HDL

code generation. According to simulation results, the

designer can restructure his/her system by increasing or

decreasing the processes number (i.e. merge or scatter

processes). As a perspective, we plan to investigate the MDA

approach for VHDL/SystemC code generation from sequence

diagrams and consider asynchronous events and temporal

constraints.

Figure 7. Programming with VB API

:Transmitter

get_data_fromApp(&buffer)

:Timer

start_timer(s.seq)start_timer(s.seq)

send_data_to_channel(&s)

:Channel

send_data_to_channel(&s)

wait_for_event(&event)

get_data_from_channel(s) [event == new_frame]

wait_for_event(&event)

get_data_from_channel(s) [event == new_frame]

:ReceiverENV

get_data_fromApp(&buffer)get_data_fromApp(&buffer)

get_data_fromApp(&buffer)

Receive

Ref

(a)

:Receiver

wait_for_event(&event)

:Channel

wait_for_event(&event)

get_data_from_channel(s) [event == new_frame]

send_data_to_channel(&s)

get_data_from_channel(s) [event == new_frame]

send_data_to_channel(&s)

ENV

send_data_toApp(&r.info) [r.seq == framenum]send_data_toApp(&r.info) [r.seq == framenum]

(b)

Figure 8. UML sequence diagrams for SDP

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 58
Volume 2, Issue 1, February 2011

(a) Main sequence diagram; (b) sequence diagram for receive

use case.

get_data_fromApp

int framenum;

frame s;

packet buffer;

event_t event;

framenum = 1;

true
[Yes]

«loop»

s.info = buffer;

s.seq =

framenum;

[Yes]

«loop»

Channel::send_data_to_channel

Timer::start_timer

event == new_frame

[No]

[Yes]

Channel::get_data_fromChannel

[Yes]

get_data_fromApp

[No][No]

[No]

Figure 9. UML activity diagram for Receiver object

Figure 10. SystemC code generation from Rhapsody

UML models

References

[1] Akehurst, D.H., Uzenkov, O., Howells, W.G., Mcdonald

Maier, K.D., Bordbar, B., “Compiling UML state

diagrams into VHDL: An experiment in Using Model

Driven Development”, FDL‟07, 2007.

[2] Ashenden, P.J., “The VHDL cookbook”, first edition,

published by Morgan Kaufmann, 1990.

[3] Ashenden, P.J., “VHDL Tutorial”, Elsevier Science

(USA), 2004.

[4] Bjarklund, D., Lilius, J., Poress, I., “Towards efficient

code synthesis from Statecharts”, Puml Workshop at

UML2001, 2001.

[5] Bjarklund, D., Lilius, J., “From UML behavioral

descriptions to efficient synthesizable VHDL”,

proceedings of 20
th

 IEEE NORCHIP Conference,

Copenhagen, Denmark, 2002.

[6] Booch, G., Rumbaugh, J., Jacobson I., “Unified

Modeling Language User Guide”, Addison-Wesley,

1999.

[7] Boutekkouk, F., Benmohammed, M., Bilavarn, S.,

Auguin, M., “UML2.0 profiles for Embedded Systems

and Systems On a Chip (SOCs)”, JOT (Journal of

Object Technology), January, 2009.

[8] Coyle, F.P, Thornton, M.A., “From UML to HDL: a

Model Driven Architectural Approach to Hardware-

Software Co-Design”, proceedings of Information

Systems: New Generations Conference (ISNG), p. 88-

93, 2005.

[9] Gajski, D., Vahid, F., Narayan, S., Gong, J.,

“Specification and Design of Embedded Systems”,

Prentice Hall. Englewood, New jersey 07632, 1994.

[10] Jerraya, A.A., Wolf, W., “Multiprocessor systems on

chip”, Morgan Kaufmann publishers, 2005.

[11] Martin G., “UML for embedded systems specification

and design: motivation and overview”, Design,

Automation and Test in Europe Conference and

Exhibition, 2002. Proceedings, p. 773–775, 2002.

[12] McUmber, W.E., Cheng, B.H.C., “UML-based analysis

of embedded systems using a mapping to VHDL”,

proceedings of IEEE Int. Symposium on High

Assurance Software Engineering (HASE‟99),

Washington, DC, USA, p. 56-63, 1999.

[13] ModelSim documentation,

ftp://ftp.xilinx.com/pub/documentation.

[14] Narayan, S., Vahid, F., Gajski, D.D, “Translating system

specifications to VHDL”, IEEE European Design

Automation Conference, Amsterdam, Netherlands,

1991.

[15] Rhapsody UML modeler from Telelogic, an IBM

company. www.telelogic.com/products/rhapsody

[16] Riccobene, E., Scandura, P., Rosti, A., Bocchino, S., “A

SOC Design Methodology Involving a UML2.0 Profile

for SystemC”, Proceedings of the Design, Automation

and Test in Europe Conference end Exhibition

(DATE‟05), 2005.

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 59
Volume 2, Issue 1, February 2011

[17] Rieder, M., Steiner, R., Berhouzoz, C., Corthay, F.,

Sterren, T., “Synthesized UML, a Practical Approach to

Map UML to VHDL”, LNCS, Volume 3943, 2006.

[18] SystemC, Functional specification for SystemC 2.0,

www.systemc.org, 2002.

[19] SystemC, Version 2.0 User‟s guide, www.systemc.org,

2002.

[20] SystemC, IEEE Standard SystemC
®
 language Reference

Manual, www.systemc.org, 2005.

[21] Thomson, R., Chouliaras, V., Mulvaney, D., Plessis, P.,

“From UML to Structural Hardware Designs”,

UMLSOC, 2007.

[22] UML2.0 Superstructure Specification,

http://www.omg.org, 2003.

[23] VHDL, IEEE Standard VHDL Language Reference

Manual. IEEE, IEEE Std 1076, 2000.

[24] Vidal, J., De Lamotte, F., Gogniat, G., Soulard, P.,

Diguet, JP., “A codesign approach for embedded

system modeling and code generation with UML and

MARTE”, DATE09, 2009.

Author Biography

Fateh Boutekkouk was born in Constantine (Algeria). He received his BS

degree in Computer science from the University of Constantine, his MS

degree from the University of Jijel (Algeria), and his PhD from the

University of Constantine in 2010. He is an assistant professor at the

University of Oum el Bouaghi (Algeria) since 2003. His current research

interests include Software Engineering, Embedded Systems and Systems On

Chip (SOC) design.

